Nexus Prime fuses multimodal AI (text, vision, audio, real-time data) for zero-shot learning, ethical reasoning, and simulations in climate and medicine. Quantum-inspired algorithms enable exponential speed, solving intractable problems in seconds.
Nexus Prime is a cutting-edge, super advanced multimodal AI model that converges text, vision, audio, and real-time data processing for zero-shot learning, ethical decision-making, and adaptive reasoning. It excels in simulating complex scenarios like global climate modeling and personalized medicine, leveraging quantum-inspired algorithms for exponential computational speedup. Built with ethical AI at its core, Nexus Prime includes built-in bias mitigation, fairness checks, and human-aligned reinforcement learning from feedback (RLHF). It supports distributed training, edge deployment, neuromorphic computing, federated learning, and VR/AR-enhanced simulations, making it ideal for high-stakes, real-world applications.
git clone https://github.com/KOSASIH/nexus-prime.git
cd nexus-prime
pip install -r requirements.txt
Key dependencies: torch, transformers, qiskit, ray, fastapi, onnx, pytorch-lightning, pyvista, kubernetes, etc.
pip install qiskitfrom qiskit import IBMQ; IBMQ.load_account()use_hardware=True in configs.docker build -t nexusprime:latest .
python src/nexus_prime/utils/download_weights.py --api-key YOUR_KEYLoad and run the model for multimodal predictions:
from nexus_prime import NexusPrime
import torch
model = NexusPrime()
model.eval()
inputs = {
'text': {'input_ids': torch.randint(0, 30522, (1, 512))}, # BERT tokens
'vision': torch.randn(1, 3, 224, 224), # Image tensor
'audio': torch.randn(1, 16000), # Audio waveform
'real_time': torch.randn(1, 768) # Sensor data
}
with torch.no_grad():
output = model(inputs)
prediction = output.argmax().item()
print(f"Prediction: {prediction}")
Start the FastAPI server for real-time queries:
python src/nexus_prime/inference/api.py
Then, query via curl or Postman (see docs/api_docs.md for details):
curl -X POST "http://localhost:8000/infer" -H "Content-Type: application/json" -d '{"text": "Test input"}'
Run complex scenarios:
from nexus_prime.core.model import NexusPrime
model = NexusPrime()
result = model.simulate_scenario('climate', {'region': 'global'})
print(result) # {'prediction': 1, 'ethical_flag': True}
Train with distributed and ethical features:
from nexus_prime.training.trainer import train_distributed
config = {'num_classes': 1000, 'lr': 0.001}
train_distributed(config, num_workers=4)
For hyperparameter tuning: python src/nexus_prime/training/hyperparameter_tuning.py
Export to ONNX and deploy:
from nexus_prime.inference.engine import InferenceEngine
engine = InferenceEngine()
engine.export_to_onnx()
# Deploy on edge device with low-power inference
python examples/scripts/quick_start.py – Basic loading and inference.examples/jupyter_notebooks/climate_simulation.py – End-to-end modeling with VR/AR.examples/jupyter_notebooks/medical_diagnosis.py – Personalized medicine with ethical auditing.examples/jupyter_notebooks/creative_generation.py – Zero-shot art/code synthesis with quantum enhancement.python advanced/federated_learning/privacy_training.py – Privacy-preserving training.python advanced/neuromorphic/brain_inspired.py – Energy-efficient spiking networks.Run notebooks in Jupyter: jupyter notebook examples/jupyter_notebooks/
See docs/api_docs.md for detailed endpoints, parameters, and examples. Key endpoints:
/infer: Multimodal inference./simulate: Scenario simulations./health: System status.Refer to docs/tutorials/training_guide.md for steps on data preparation, ethical training, and troubleshooting.
kubectl apply -f deploy/kubernetes/deployment.yml
kubectl get pods # Check status
cd deploy/terraform
terraform init
terraform apply
prometheus --config.file=deploy/monitoring/prometheus.ymlWe welcome contributions! Follow these steps:
git checkout -b feature/your-feature.tests/ and ensure they pass: pytest.black src/ and flake8 src/.bandit.For issues, use GitHub Issues. Join our Discord for discussions.
Licensed under the MIT License. See LICENSE for details.
For the latest, check Releases.
docs/tutorials/training_guide.md or logs in audit.log.Nexus Prime – The Future of Ethical, Quantum-Enhanced AI. 🚀