Systema is an innovative meteorology and climate service that utilizes a cutting-edge microservices project system. It aims to provide accurate weather forecasts, climate analysis, and early warning systems to help individuals, communities, and organizations make informed decisions in response to changing weather patterns and extreme climate events.
Accurate Weather Forecasts: Systema leverages advanced meteorological models and real-time data to provide precise and reliable weather forecasts for various locations.
Climate Analysis: The service offers in-depth climate analysis, historical weather data, and trend predictions to understand long-term climate patterns and changes.
Early Warning Systems: Systema includes robust early warning systems to alert users about potential weather-related hazards, such as storms, heatwaves, floods, and droughts.
Modular Design: The microservices architecture enables a modular design, making it flexible and easy to add or update functionalities independently.
Scalability and Resilience: The microservices project system allows seamless scaling of specific services to handle varying levels of user demands and ensures fault isolation for enhanced system resilience.
Integration with External Services: Systema can seamlessly integrate with external APIs and data sources, enhancing its capabilities and providing a comprehensive climate information platform.
To install Systema, follow these steps:
Clone the Systema repository from GitHub:
git clone https://github.com/systema-project/systema.git
cd systema
Set up the required dependencies and environment:
npm install
Configure the microservices as needed, and set up external API keys and services.
Run the application:
npm start
Systema provides a user-friendly web interface and RESTful APIs for easy interaction. Users can access weather forecasts, climate data, and early warning alerts based on their location or region of interest. The service also allows users to analyze historical climate data and trends for research purposes.
The API documentation can be found at https://systema-api-docs.com.
We welcome contributions from the community to improve and expand Systema’s capabilities. To contribute, follow these steps:
Fork the Systema repository on GitHub.
Create a new branch with a descriptive name for your changes.
Make your changes and test thoroughly.
Submit a pull request, explaining your changes and their benefits.
Systema is released under the MIT License.
For any issues, questions, or feature requests, please contact our support team at support@systema.com or visit our website.
We would like to express our gratitude to the open-source community and all contributors who have helped make Systema a reality.
Certainly! Here are additional sections to include in the README for Systema:
Before installing Systema, ensure that your system meets the following requirements:
To configure Systema for your specific environment, you need to modify the following configuration files:
config.js
: Update API keys, database connection details, and other settings as required.
regions.json
: Define the regions of interest for weather forecasts and climate analysis. You can add or remove regions based on your needs.
Systema can be deployed in various environments, such as local development, staging, or production. Consider using containerization platforms like Docker and container orchestration tools like Kubernetes for scalable deployments.
Systema includes a comprehensive test suite to ensure the reliability of its microservices. Run the tests using the following command:
npm test
Systema is set up with continuous integration to automatically test code changes and maintain code quality. Each pull request triggers the CI process, ensuring that new contributions meet the project’s standards.
Systema prioritizes security and data privacy. Regular security audits are conducted to identify and fix potential vulnerabilities. If you discover any security issues, please report them to our security team at security@systema.com.
View our roadmap to see the planned features and improvements for future releases. You can find the roadmap in the ROADMAP.md file.
Check the KNOWN_ISSUES.md file for a list of known issues and workarounds.
The CHANGELOG.md file details the changes, bug fixes, and new features in each version of Systema.
We value your feedback and suggestions for improving Systema. Reach out to us at feedback@systema.com or join our community forum at https://community.systema.com to engage with other users and developers.
With these additional sections, the README provides more comprehensive information about Systema, including configuration, deployment, testing, security, and ways to get involved with the project.
Thank you for considering Systema, the advanced meteorology and climate service powered by cutting-edge microservices. We hope our platform will contribute to better understanding and preparedness for the ever-changing climate. Feel free to reach out if you have any inquiries or feedback!
Node is required for generation and recommended for development. package.json
is always generated for a better development experience with prettier, commit hooks, scripts and so on.
In the project root, JHipster generates configuration files for tools like git, prettier, eslint, husky, and others that are well known and you can find references in the web.
/src/*
structure follows default Java structure.
.yo-rc.json
- Yeoman configuration file
JHipster configuration is stored in this file at generator-jhipster
key. You may find generator-jhipster-*
for specific blueprints configuration..yo-resolve
(optional) - Yeoman conflict resolver
Allows to use a specific action when conflicts are found skipping prompts for files that matches a pattern. Each line should match [pattern] [action]
with pattern been a Minimatch pattern and action been one of skip (default if ommited) or force. Lines starting with #
are considered comments and are ignored..jhipster/*.json
- JHipster entity configuration files
npmw
- wrapper to use locally installed npm.
JHipster installs Node and npm locally using the build tool by default. This wrapper makes sure npm is installed locally and uses it avoiding some differences different versions can cause. By using ./npmw
instead of the traditional npm
you can configure a Node-less environment to develop or test your application./src/main/docker
- Docker configurations for the application and services that the application depends onBefore you can build this project, you must install and configure the following dependencies on your machine:
After installing Node, you should be able to run the following command to install development tools. You will only need to run this command when dependencies change in package.json.
npm install
We use npm scripts and Angular CLI with Webpack as our build system.
Run the following commands in two separate terminals to create a blissful development experience where your browser auto-refreshes when files change on your hard drive.
./gradlew -x webapp
npm start
Npm is also used to manage CSS and JavaScript dependencies used in this application. You can upgrade dependencies by
specifying a newer version in package.json. You can also run npm update
and npm install
to manage dependencies.
Add the help
flag on any command to see how you can use it. For example, npm help update
.
The npm run
command will list all of the scripts available to run for this project.
JHipster ships with PWA (Progressive Web App) support, and it’s turned off by default. One of the main components of a PWA is a service worker.
The service worker initialization code is disabled by default. To enable it, uncomment the following code in src/main/webapp/app/app.module.ts
:
ServiceWorkerModule.register('ngsw-worker.js', { enabled: false }),
For example, to add Leaflet library as a runtime dependency of your application, you would run following command:
npm install --save --save-exact leaflet
To benefit from TypeScript type definitions from DefinitelyTyped repository in development, you would run following command:
npm install --save-dev --save-exact @types/leaflet
Then you would import the JS and CSS files specified in library’s installation instructions so that Webpack knows about them: Edit src/main/webapp/app/app.module.ts file:
import 'leaflet/dist/leaflet.js';
Edit src/main/webapp/content/scss/vendor.scss file:
@import 'leaflet/dist/leaflet.css';
Note: There are still a few other things remaining to do for Leaflet that we won’t detail here.
For further instructions on how to develop with JHipster, have a look at Using JHipster in development.
Microservices doesn’t contain every required backend feature to allow microfrontends to run alone. You must start a pre-built gateway version or from source.
Start gateway from source:
cd gateway
npm run docker:db:up # start database if necessary
npm run docker:others:up # start service discovery and authentication service if necessary
npm run app:start # alias for ./(mvnw|gradlew)
Microfrontend’s build-watch
script is configured to watch and compile microfrontend’s sources and synchronizes with gateway’s frontend.
Start it using:
cd microfrontend
npm run docker:db:up # start database if necessary
npm run build-watch
It’s possible to run microfrontend’s frontend standalone using:
cd microfrontend
npm run docker:db:up # start database if necessary
npm watch # alias for `npm start` and `npm run backend:start` in parallel
You can also use Angular CLI to generate some custom client code.
For example, the following command:
ng generate component my-component
will generate few files:
create src/main/webapp/app/my-component/my-component.component.html
create src/main/webapp/app/my-component/my-component.component.ts
update src/main/webapp/app/app.module.ts
JHipster Control Center can help you manage and control your application(s). You can start a local control center server (accessible on http://localhost:7419) with:
docker compose -f src/main/docker/jhipster-control-center.yml up
Congratulations! You’ve selected an excellent way to secure your JHipster application. If you’re not sure what OAuth and OpenID Connect (OIDC) are, please see What the Heck is OAuth?
To log in to your app, you’ll need to have Keycloak up and running. The JHipster Team has created a Docker container for you that has the default users and roles. Start Keycloak using the following command.
docker compose -f src/main/docker/keycloak.yml up
The security settings in src/main/resources/config/application.yml
are configured for this image.
spring:
...
security:
oauth2:
client:
provider:
oidc:
issuer-uri: http://localhost:9080/realms/jhipster
registration:
oidc:
client-id: web_app
client-secret: web_app
scope: openid,profile,email
Some of Keycloak configuration is now done in build time and the other part before running the app, here is the list of all build and configuration options.
Before moving to production, please make sure to follow this guide for better security and performance.
Also, you should never use start-dev
nor KC_DB=dev-file
in production.
When using Kubernetes, importing should be done using init-containers (with a volume when using db=dev-file
).
If you’d like to use Okta instead of Keycloak, it’s pretty quick using the Okta CLI. After you’ve installed it, run:
okta register
Then, in your JHipster app’s directory, run okta apps create
and select JHipster. This will set up an Okta app for you, create ROLE_ADMIN
and ROLE_USER
groups, create a .okta.env
file with your Okta settings, and configure a groups
claim in your ID token.
Run source .okta.env
and start your app with Maven or Gradle. You should be able to sign in with the credentials you registered with.
If you’re on Windows, you should install WSL so the source
command will work.
If you’d like to configure things manually through the Okta developer console, see the instructions below.
First, you’ll need to create a free developer account at https://developer.okta.com/signup/. After doing so, you’ll get your own Okta domain, that has a name like https://dev-123456.okta.com
.
Modify src/main/resources/config/application.yml
to use your Okta settings.
spring:
...
security:
oauth2:
client:
provider:
oidc:
issuer-uri: https://{yourOktaDomain}/oauth2/default
registration:
oidc:
client-id: {clientId}
client-secret: {clientSecret}
security:
Create an OIDC App in Okta to get a {clientId}
and {clientSecret}
. To do this, log in to your Okta Developer account and navigate to Applications > Add Application. Click Web and click the Next button. Give the app a name you’ll remember, specify http://localhost:8080
as a Base URI, and http://localhost:8080/login/oauth2/code/oidc
as a Login Redirect URI. Click Done, then Edit and add http://localhost:8080
as a Logout redirect URI. Copy and paste the client ID and secret into your application.yml
file.
Create a ROLE_ADMIN
and ROLE_USER
group and add users into them. Modify e2e tests to use this account when running integration tests. You’ll need to change credentials in src/test/javascript/e2e/account/account.spec.ts
and src/test/javascript/e2e/admin/administration.spec.ts
.
Navigate to API > Authorization Servers, click the Authorization Servers tab and edit the default one. Click the Claims tab and Add Claim. Name it “groups”, and include it in the ID Token. Set the value type to “Groups” and set the filter to be a Regex of .*
.
After making these changes, you should be good to go! If you have any issues, please post them to Stack Overflow. Make sure to tag your question with “jhipster” and “okta”.
If you’d like to use Auth0 instead of Keycloak, follow the configuration steps below:
dev-xxx.us.auth0.com
Regular Web Applications
. Switch to the Settings
tab, and configure your application settings like:
http://localhost:8080/login/oauth2/code/oidc
http://localhost:8080/
ROLE_ADMIN
, and ROLE_USER
.Empty rule
template. Provide a meaningful name like JHipster claims
and replace Script
content with the following and Save.function (user, context, callback) {
user.preferred_username = user.email;
const roles = (context.authorization || {}).roles;
function prepareCustomClaimKey(claim) {
return `https://www.jhipster.tech/${claim}`;
}
const rolesClaim = prepareCustomClaimKey('roles');
if (context.idToken) {
context.idToken[rolesClaim] = roles;
}
if (context.accessToken) {
context.accessToken[rolesClaim] = roles;
}
callback(null, user, context);
}
JHipster
application, modify src/main/resources/config/application.yml
to use your Auth0 application settings:spring:
...
security:
oauth2:
client:
provider:
oidc:
# make sure to include the ending slash!
issuer-uri: https://{your-auth0-domain}/
registration:
oidc:
client-id: {clientId}
client-secret: {clientSecret}
scope: openid,profile,email
jhipster:
...
security:
oauth2:
audience:
- https://{your-auth0-domain}/api/v2/
OpenAPI-Generator is configured for this application. You can generate API code from the src/main/resources/swagger/api.yml
definition file by running:
./gradlew openApiGenerate
Then implements the generated delegate classes with @Service
classes.
To edit the api.yml
definition file, you can use a tool such as Swagger-Editor. Start a local instance of the swagger-editor using docker by running: docker compose -f src/main/docker/swagger-editor.yml up -d
. The editor will then be reachable at http://localhost:7742.
Refer to Doing API-First development for more details.
To build the final jar and optimize the Systema application for production, run:
./gradlew -Pprod clean bootJar
This will concatenate and minify the client CSS and JavaScript files. It will also modify index.html
so it references these new files.
To ensure everything worked, run:
java -jar build/libs/*.jar
Then navigate to http://localhost:8081 in your browser.
Refer to Using JHipster in production for more details.
To package your application as a war in order to deploy it to an application server, run:
./gradlew -Pprod -Pwar clean bootWar
To launch your application’s tests, run:
./gradlew test integrationTest jacocoTestReport
Unit tests are run by Jest. They’re located in src/test/javascript/ and can be run with:
npm test
Performance tests are run by Gatling and written in Scala. They’re located in src/test/java/gatling/simulations.
You can execute all Gatling tests with
./gradlew gatlingRun.
For more information, refer to the Running tests page.
Sonar is used to analyse code quality. You can start a local Sonar server (accessible on http://localhost:9001) with:
docker compose -f src/main/docker/sonar.yml up -d
Note: we have turned off forced authentication redirect for UI in src/main/docker/sonar.yml for out of the box experience while trying out SonarQube, for real use cases turn it back on.
You can run a Sonar analysis with using the sonar-scanner or by using the gradle plugin.
Then, run a Sonar analysis:
./gradlew -Pprod clean check jacocoTestReport sonarqube -Dsonar.login=admin -Dsonar.password=admin
Additionally, Instead of passing sonar.password
and sonar.login
as CLI arguments, these parameters can be configured from sonar-project.properties as shown below:
sonar.login=admin
sonar.password=admin
For more information, refer to the Code quality page.
You can use Docker to improve your JHipster development experience. A number of docker-compose configuration are available in the src/main/docker folder to launch required third party services.
For example, to start a postgresql database in a docker container, run:
docker compose -f src/main/docker/postgresql.yml up -d
To stop it and remove the container, run:
docker compose -f src/main/docker/postgresql.yml down
You can also fully dockerize your application and all the services that it depends on. To achieve this, first build a docker image of your app by running:
npm run java:docker
Or build a arm64 docker image when using an arm64 processor os like MacOS with M1 processor family running:
npm run java:docker:arm64
Then run:
docker compose -f src/main/docker/app.yml up -d
When running Docker Desktop on MacOS Big Sur or later, consider enabling experimental Use the new Virtualization framework
for better processing performance (disk access performance is worse).
For more information refer to Using Docker and Docker-Compose, this page also contains information on the docker-compose sub-generator (jhipster docker-compose
), which is able to generate docker configurations for one or several JHipster applications.
To configure CI for your project, run the ci-cd sub-generator (jhipster ci-cd
), this will let you generate configuration files for a number of Continuous Integration systems. Consult the Setting up Continuous Integration page for more information.
Systema by KOSASIH is licensed under Attribution 4.0 International